FREESURFER TUTORIAL

Kevin Aquino & Lauren Gascoyne 2016

Outline

- What is Freesurfer?
- Getting started
- Freesurfer workflow
- Running Freesurfer
- Using PSIRs from SPMIC
- Fixing bad segmentations
- High resolution data
- Tips and tricks
- Freesurfer in action (Lauren Gascoyne)

Advanced topics

What is Freesurfer?

- Automatic segmentation
- Uses intensity gradients, surface constraints and registration to talairach atlases
- Generates:
 - Surfaces at: WM/GM (white), GM/CSF (pial)
 - Automatic Volume parcellations
 - Automatic surface parcellations (and can import Lausanne et al. Atlases)
 - Surface-based registrations

generated using from 7T PSIR from Notts

Getting started

- Only runs on Linux, and Mac (El capitan users beware)
- Open software available from <u>http://freesurfer.net/</u>
- Which version to choose from?
 - v5.3 Stable release well suited to 1mm isotropic MPRAGE
 - beta version "v6" can work with high-resolution data
- Freesurfer wiki explains installation steps well
- Understanding shell operations helps!
- versions OS same

Freesurfer workflow

Autorecon Processing Stages (see -autorecon# flags above):

- 1. Motion Correction and Conform
- 2. NU (Non-Uniform intensity normalization)
- 3. Talairach transform computation
- 4. Intensity Normalization 1
- 5. Skull Strip
- 1. EM Register (linear volumetric registration)
- 2. CA Intensity Normalization
- 3. CA Non-linear Volumetric Registration
- 4. Remove Neck
- 5. LTA with Skull
- 6. CA Label (Volumetric Labeling, ie Aseg) and Statistics
- 7. Intensity Normalization 2 (start here for control points)
- 8. White matter segmentation
- 9. Edit WM With ASeg
- 10. Fill (start here for wm edits)
- 11. Tessellation (begins per-hemisphere operations)
- 12. Smooth1
- 13. Inflate1
- 14. QSphere
- 15. Automatic Topology Fixer
- 16. Final Surfs (start here for brain edits for pial surf)
- 17. Smooth2
- 18. Inflate2
- 19. Spherical Mapping
- 20. Spherical Registration
- 21. Spherical Registration, Contralateral hemisphere
- 22. Map average curvature to subject
- 23. Cortical Parcellation Desikan_Killiany and Christophe (Labeling)
- 24. Cortical Parcellation Statistics
- 25. Cortical Ribbon Mask
- 26. Cortical Parcellation mapping to Aseg

autorecon1 Volume pre-processing

autorecon2 Segmentation, surface recontstruction, toplogical fixes and inflation

autorecon3 Spherical registration, between-subject registration maps, cortical parcellations recon-all everything

Freesurfer Inputs

- MPRAGE/MP2RAGE T1-weighted data
- PSIR (Nottingham's standard)
 - Positive, mulitplied by 200 (from standard output)
- T2-weighted data
- Whole brains only!
- Formats:
 - Nifti (.nii)
 - Analyze (.hdr/.img)

Running freesurfer

• To run recon-all with all the stages (1,2,and 3) simply type:

recon-all -all -s SUBJECT -I INPUTIMAGE

DoAbs = 0 Found 4440765 voxels in ma Writing masked volume to b	LL_SUB_03 - tee - 103×33 sk (pct= 18.59) rain.finalsurfs.mgzdone.	 Freesurfer will run displaying information in the terminal
<pre>### WM Segmentation Wed Fel \n mri_binarize.c,v 1.41 cnd /Applications/Freesurfi cndline mri_binarizei w sysname Darwin hostname pppka01.nottingha machine x86_64 user ppzka input wm.mgz</pre>	b 17 16:14:43 GMT 2016 min 255max 255o wn255.mgzcount wn255.txt \n 2014/0879-12:47:29 greve Exp \$ er/subjects/lL_SOB_OMdect m.mgzmin 255max 255o-wn255.mgzcount wn255.txt m.ac.uk	screen
frame 0 nErode3d 0 nErode3d 0 output wm255.mgz Binarizing based on thresh min 255 max 255 binvol 1 binvolnot 0 fstart = 0, fend = 0, nfra Found 713 values in range Counting number of vaxels 3	old mes = 1 in first frame	WM Segmentation Stage: 12 Part of auto-recon2
Found 713 voxels in final n Count: 713 238.782228 2388 mri_binarize done \n mri_binarizei wm.mgz	mask 7872 0.002985 min 1max 1o wml.mgzcount wml.txt \n	 Can take up to~40 hours

What does freesurfer output?

Outputs from freesurfer can be viewed in freeview Load volume -> mri -> ...

And spheres etc.

What does freesurfer output?

White and pial surfaces follow boundaries of WM/GM and GM/CSF respectively

Inflated surface = smoothed and inflated to approach sphere, using fixed contraints Sphere surface = surface inflated all the way to a sphere

All surfaces are generated from lh.white, and have the same number of vertices. Hence mapping of each vertex along the way.

What does freesurfer output?

Atlas registrations

- Deskilany atlas
- Destriux atlas
- Lausanne atlas (you can apply this)

From these outputs you can calculate properties such as:

- surface area
- Gaussian/intrinsic curvature
- Mean curvature
- cortical thickness
- local gyrification index

(As described at the end of this talk)

Freesurfer logs

Logs stored in:

- + SUBJECTFOLDER
 - + SUBJECT
 - + scripts
 - + recon-all.log

LL_SUB_04			
		Q Search	
lame	 Date Modified 	Bize	Kind
.DS_Store	Today 15:11	8 KB	Document
⊧ 💼 bem	15 February 2016 15:23		Folder
Iabel	15 February 2016 15:23		Folder
🕨 🛄 mri	Today 15:10		Folder
/ 📄 scripts	Today 15:05		Folder
build-stamp.txt	15 February 2016 15:23	35 bytes	text
IsRunning.h+rh	Today 15:05	381 bytes	Document
lastcal.build-stamp.txt	Today 15:05	35 bytes	text
petchdir.txt	Today 15:05	Zero bytes	text
ponsec.out.log	15 February 2016 19:28	207 bytes	Log File
recon-all-status.log	Today 15:10	2 KB	Log File
recon-all.omd	Today 15:10	8 KB	Document
recon-all.env	Today 15:05	3 KB	Document
recon-all.env.bak	Today 15:05	3 KB	Document
recon-all.log	Today 15:10	216 KB	Log File
erc 📄	15 February 2016 15:23		Folder
e 💼 stats	15 February 2016 15:23		Folder
suf	15 February 2016 19:46		Folder
tmp	15 February 2016 15:23		Folder
touch	15 February 2016 19:46		Folder
trash	15 February 2016 15:23		Folder

Diagnosing errors

 Freesurfer can crash for any number of reasons, the way to diagnose is to look at the log file (very important)

Open up recon-all.log (or look in the terminal screen) and search for the 1ST instance of **"exited with ERRORS"**

This information is useful to report bugs!

In this case (as often with sub mm data) Topological correction hanging.

Diagnosing errors

https://mail.nmr.mgh.harvard.edu/mailman/listinfo/freesurf er

[Freesurfer] Using freesurfer on a partial brain

Bruce Fischl fischl at nmr.mph.harvard.edu. The Jan 19 10:07:22 EST 2016

- · Previous message: [Freesurfer] Using freesurfer on a partial brain
- Next message: [Freesurfer] Little cluster after FDR correction
 Messages sorted by: [date] [thread] [subject] [author]

Ri Kevin

we have used it on hemispheres, but I don't think it will work on partial brains. It violates too many assumptions (e.g. topology,etc...) secty Bruce

On Tue, 19 Jan 2016, Newin Againo wrote:

> Dear Pressurfer list,

> I was wondering if anyone here has used freesurfer on anatomical scars acquired on a partial brain?

> I realize that recon-all and many of the tools are suited for a full brain, but I was wondering if anyone out there has had > experience making the tools work for this scenario? Not necessarily the parcellations and the full set-up, but other tools such > as segmentation, creating a white and pial surface and topology fimes.

> Cheere,

> Dr. Revis Acuine. Research fellow, > Sir Peter Manafield Magnetic Resonance Center, The University of Rottingham.

Bonorary Research Fellow > School of Physics, Faculty of Science, University of Sydney

> 2 Kevin.aquino at nottingham.ac.uk, aquino at physics.usyd.edu.au / 9 wee.physics.usyd.edu.au/-aquino/

> The brain is a wonderful organ. It starts working the moment you get up and does not stop until you get into the office.

> Robert Front

> CRICOR SSE26A

> This email plus any attachments to it are confidential. Any unauthorised use is strictly prohibited. If you receive this small > in error, please delete it and any attachments.

> Please think of our environment and only print this e-mail if necessary,

- Previous message: [Freesurfer] Using freesurfer on a partial brain
 Next message: [Freesurfer] Little cluster after FDR correction
 Messages sorted by: [date,] [thread.] [subject.] [author.]

More information about the Preesurfer mailing list

Checking segmentation quality

- Does the white surface follow the WM/GM boundary?
- Does the pial surface follow the GM/CSF boundary?
- Is the surface distorted?

- If these are not correct can impact:
 - Thickness measurements
 - Gyrification measures
 - Surface area
 - Cortical layering

Fixing bad segmentations

Fixing WM segmentations

- Open freeview, load brain.mgz, wm.gz, lh and rh surfaces
- Highlight wm -> Recon edit -> shift click to remove. Page up/down go through slices
- Remove unnecessary voxels

Fixing segmentations #2

- Open freeview, load brain.mgz, brainmask.mgz, lh and rh surfaces
- Highlight brainmask -> Recon edit -> shift click to remove. Page up/down go through slices
- Remove unnecessary voxels (dura)

Fixing bad segmentations

After you have fixed the segmentation run the following commands:

recon-all -autorecon2-wm -autorecon3 -subjid \$SUBJECT

• This will run steps 15-23 (starting from filling in WM),

Fixing bad segmentations

- Finished updated segmentation
- Inspect the surfaces again!

Finished result

- Segmentation can still be updated!
- Up to projects (in the absence of time restraints).

High resolution (<1mm Images)

- For <1mm isotropic resolution data Freesurfer's toplogical checks might fail
- Freesurfer V5.3
 - Use HiResRecon-all script (can provide)
- Freesurfer V6 (beta)
 - Works out of the box
- With either version, failure due to toplogical defects is a common occurrence.

Toplogical errors (high res problems)

- If Freesurfer hangs at toplogical defects as shown here.
- Vertices in the order of 200,000
- Large number means Freesurfer will hang
- Find defects
 - Surface = lh.smoothwm.nofix
 - Overlay = lh.defect_labels
- Continue as before

Personal experiences in freesurfer

Should you fix these defects?

- Whole brain analyses (possibly)
- Large group analyses (less likely)
- Only if it affects your brain region of interest

FREESURFER IN ACTION

Lauren Gascoyne

QDEC Query, Design, Estimate, Contrast

Group analysis of morphometry data

thickness, area, volume, sulc, curv, jacobian_white

Steps:

- smooth the cortical surfaces for each individual
 - recon-all –s <subjid> -qcache
- input subject demographics in a table format e.g. age, gender, other covariates
- open qdec and import the table
- choose a design and run the stats engine

QDEC

Labels

Easy to draw

Use QDEC, tkmedit, tksurfer, freeview

Can do it using for a group (using fsaverage) or on an individual level

Local Gyrification Index

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 2, FEBRUARY 2008

A Surface-Based Approach to Quantify Local Cortical Gyrification

Marie Schaer*, Meritxell Bach Cuadra, Lucas Tamarit, François Lazeyras, Stephan Eliez, and Jean-Philippe Thiran, Senior Member, IEEE

Abstract—The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.

Index Terms—Cortical complexity, gyrification, neuroimaging, statistical analysis, surface-based anatomical modeling.

orders. For example, it has been suggested that increased gyrification in Williams syndrome relies on a developmental arrest due to microvascular infarcts during early cortical development [15]. Altogether, these findings suggest that cortical complexity subtly reflects underlying biological processes associated with normal or abnormal cognitive functioning. Therefore, the development of reliable and precise algorithms to study gyrification is certainly key in our future understanding of normal and abnormal brain development.

Initial moves to assess cortical complexity were made in the second half of the twentieth century by comparative neuroanatomists, who had observed that an increase in the cortical area during mammalian evolution was accompanied by an

I. INTRODUCTION

161

Local Gyrification Index

 Ratio of sulcal (buried) and gyral (visible) cortex across a 25mm area surrounding each vertex

recon-all –s <subj> -localGl Takes about 3 hours per subject – measures 150,000 vertices per hemisphere

Local Gyrification Index

25mm area surrounding each vertex

Group-comparison

- Input to QDEC for statistical comparison between groups
- Vertex- vs Parcel-based analysis
 - Parcel-based analysis this can be useful for exploratory analysis, but the LGI incorporates some of the surrounding regions, so there may be some overlap with other parcels.
 - Vertex-based analysis allows examination of small areas of cortex, which would likely be more informative when examining pathological differences.

Thanks for listening!

Questions?

